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Abstract The behaviour of the low-lying quasipanicle energy levels in a superconductor- 
n o d  metal-superconductor structure is investigated analytically and numerically. The energy 
levels ax periodic in fie order parameter phase difference between the superconducting regions 
with a period of 2n. The sl&tical properties of the speclra exhibit a transition from COE to 
CUE statistics as a function of lhe phase difference with a period of A .  

Understanding the energy level statistics of normal mesoscopic systems has been in the 
centre of an ongoing research effort [ 1-71 Most of the statistical properties can be explained 
in the framework of the random matrix theory (RMT) originally proposed by Wigner and 
Dyson to describe the spectrum properties of complex nuclei [X-101 Metallic systems 
which have time reversal symmetry obey tbe Gaussian orthogonal matrix ensemble (GO€) 
eigenvalue statistics, while for systems where time reversal symmetry is broken (for 
example by a magnetic field) unitary matrix ensemble (CUE) eigenvalue statistics emerges. 
Symplectic ensemble (GSE) statistics is observed for cases in which spin-orbit scattering is 
present. On the other hand, once the system is localized the spectrum follows the Poisson 
statistics. 

Crossover between the different statistical ensembles is the subject of many recent 
studies [ 1 1-20] In the disorder-induced metal-insulator transition a crossover between GOE 
and Poisson statistics occurs 11 1-13] and a new dimensional dependent statistical behaviour 
of the spectrum at the mobility edge is predicted [14, 151. The study of tbe transition from 
the COE to CUE statistics bas concentrated on the effect of a magnetic field [1&20] has been 
shown that even for strong magnetic fields it is hard to obtain clean GliE characteristics of the 
spectrum [18-201 due to short paths for which the time reversal symmetry is not completely 
broken. 

Another set of systems for which the time reversal symmetry is broken are the hybrid 
normal metal-superconductor structures. These structures have recently received much 
attention 121-271 For the most part, experiment and theory have concentrated on their 
transport properties. In this paper we shall consider the statistical properties of the spectrum 
of these systems. 

As a particular example the superconductor-normal metal-superconductor (SNS) junction 
shown in figure 1 will be considered. The system is sensitive to the order parameter phases 
x ,  and x 2  in the superconducting regions due to the Andreev reflections on the normal metal- 
superconducting (NS) boundary [28]. An electron above the Fermi energy (or a hole below 
the Fermi energy) reflected from the NS boundary is transformed into a hole (electron) and 
acquires an additional phase of - x l , 2 .  Once the phases the two superconducting regions are 
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Figure 1. A SNS junction with a0 order pmmeter Aoexp(ixl) on the left superconducting 
region and Auexp(iX2) on the right superconducting repion. The normal region has dimensions 
of L, x L, x L,. 

not equal this will lead to a broken time reversal symmetry. These quasiparticles excitations 
are described by positive eigenvalues of the Bogoliubov-de Gennes (BdG) equation 1291 

where Y(T) is a two-component wave function and H = p2/2m i V(r) - EF is 
the single-electron Hamiltonian for a given potential V. In the superconducting region 
V(lx1 > L J 2 )  = 0, while in the normal region V(lxl c L,/2) is assumed to be a 
Gaussian-dishibuted white noise, defined by 

(2)  
( V W  = 0 
(V(T)V(T’) )  = y S(r - r’) 

where (. . .) denotes averaging over different realizations of the disorder potential, y = 
F ~ u F / ~ J I ! N ( E ~ ) ,  N(&)  is the averaged density of states at the Fermi energy EF, U F  is 
the Fermi velocity and is the elastic mean free path. The order parameter A(r)  in the 
superconducting regions is approximated by A = AD exp(iX1) in the first superconducting 
region (x c -L,/2) and by A = Aoexp(iX2) in the second superconducting region 
( x  > L , / 2 ) ,  while in the normal part A = 0. Thus, the reduction in the superconducting 
order parameter on approaching the SN interface is neglected. This is reasonable while 
considering low-lying excitation (i.e., E << A,) confined to the normal region by the Andreev 
scattering. All the energies are measured relative to the Fermi energy. 

In this paper the sensitivity of the variance in the number of low-lying quasiparticle 
states for a given energy window will be calculated using a diagrammatic perturbation 
method. The variance depends on the order parameter phase difference Q = xz - X I ,  and 
oscillates with a period n, while the quasiparticle energy levels have a period of 2n. This is 
similar to the situation for the conductance of a diffusive SNS junction [21, 221, For p = 0 
the variance corresponds to COE statistics while for p = nf2 it corresponds to G m  statistics. 
For values of p in between those two values the variance follows a combination of both 
statistical ensembles. In order to verify those theoretical results we have performed exact 
diagonalization numerical calculations of a tight-binding BdG model. The results fit rather 
well to the theory. We have also numerically calculated the level spacing distribution and 
found that it is less sensitive to Q than the variance of the level number. These properties 
can be investigated experimentally by tunnelling experiments through the SNS junction or 
by far-infrared spectroscopy experiments of an array on such junctions. 
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The number of states for a particular realization of disorder in a given energy range is 

where the two-compnent Green function is given by 

where WIL are the eigenvectors and E@ are the eigenvalues of the BdG equation in the presence 
of disorder. F corresponds to the inelastic level broadening. 

Following Altshuler and Shklovskii 121 the variance in the number of levels for a given 
energy region may be written as 

where 

K ( e t , h ) =  - drl  d r z  I ( I m G R ( T ~ , p l , E ~ ) I m G R ( T 2 . r ~ , e z ) )  
I 2  

(6) 
This correlation function can be calculated using a diagrammatic impurity technique. The 
main contribution comes from the diagrams shown in figure 2 (see [2]) ,  which correspond 
to 

‘ J  

279 ‘ I  

-(ImGR(rl, TI,EI))(I~G~(T~,+z.EZ))I. 

K ( E ~ . E Z )  = -Re dr l  dT2 [ ( D ( T ~ , T z , E ~  - E Z ) ) ~ + ( C ( T ~ , T ~ , E I  -EZ))~I (7 ) 

where the diffusion propagator D and the cooperon C for the low-lying Andreev excitation 
have already been calculated in 121, 221 and have the following form in the momentum 
representation: 

(8 )  
where n,. ny, R: = 0, A l ,  f2,. , .. As can be seen the diffusion propagator is not affected 
by the order parameter phases while the cooperon is an oscillating function of 9 with a 
period I. This period ‘halving’ is similar to the one seen for systems with an Ahamnov- 
Bohm flux [16] and stems from the fact that the cooperon sums up the momenta of two 
particles. Inserting the diffusion and the cooperon into the correlation function (equation 
(7)) and then performing the integrations in equation (5) will lead to 
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Figure 2. The main diagnms contributing lo the correlation function K ( a .  E Z ) .  D represents 
a diffusion propagator and C a cooperon defined in equation (8). 
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Figure 3. The level spacing distribution P ( s )  averaged over the 30 lowest electronic levels for 
different values of the order panmeter phase difference 'p. The full line represents the GOE level 
spacing dimbution. while the dashed line represents the CUE level spacing disuibution. 

The summation may be evaluated at different limits of E .  For E <( D/L: .y , t  (i.e., an 
energy window smaller than the Thouless energy) the zero mode gives the main contribution 

where GZ = min[(xn, + fp)2}. It is important to note that in the diagrammatic calculalion 
a divergence occurs as the inelastic broadening r -+ 0. This stems from the breakdown of 
the diagrammatic approximation for energy scales smaller than the averaged level separation 
[2] s. As long as one deals with E >> s, one should set r = s and the above results are 
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Figure 4. The varinnce of the number of levels in a given energy region as a funcrion of [he 
averaged number of levels for values of energy smdler than the Thouless energy. The full 
line represents the GOE variance while the dashed line represents the CUE vmance given in 
equation (11). 

similar to the results of the RMT theory [9] 
2 

1 

( S 2 N e ( E ) ) ~ o ~  = 7 M ( N , ( E ) ) )  + ACOE 

( S 2 N C ( E ) ) c u ~  = ;;;i I n ( ( N d E ) ) )  + A G U E  
(11) 

(where AGOE = 0.44 and AGUE = 0.346) up to the constan& h. Thus, for p = 0, H the 
variance of the number of energy levels for a given energy window E presented in equation 
(IO) corresponds to the GOE results. while for v, = n / 2  the variance is close to the GUE 
results. This is not surprising since for 9 = 0 time reversal symmetry is not broken while 
for (a = H the BdG equation exhibits only a false time reversal breaking 130, 161. For other 
values of 'p the time reversal symmetry is broken and a crossover towards CUE statistics is 
observed. 

For E >> D/L: , y ,2  one can exchange the summation in equation (9) with an integration 
[2] and thus obtain 

(S*N,(E))  = NdV - (Er 
where d is the dimensionality and V is the volume of the normal part of the junction. Nd is a 
numerical factor: for the three-dimensional case N3 = &/6x3 and for the two-dimensional 
case Nz = 1/4n2. It can be seen that for large values of E the variance is independent 
of the order parameter phase factor 9. Thus, the time reversal symmemy has no influence 
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Figure 5. The variance of the number of levels for values of energy larger than the Thoulcss 
cnergy. The c w e s  represent equation (9) with lhe corresponding “dues of ‘p, 

on the variance at values of E larger than the Thouless energy. This is in conlrast to the 
situation for a magnetic field in which there is a factor of two difference in the value of Nd 
between the case with a magnetic field and the case without one [2]. The difference stems 
from the fact that high values of the magnetic field nullify the cooperon while because of 
the oscillatory nature of the order parameter phase the cooperon remains always finite. This 
is similar to the situation discussed by Dupuis and Montambaux 1161 for a ring threaded by 
an Aharonov-Bohm flux. 

Until now we have discussed averaging over impurity realizations. Since when one 
prepares a new SNS junction realization the order parameter phases may also change, it  
makes sense to average also over the phases. Therefore, we define the phase-averaged 
variance as 

Inserting the value of ( S * N , ( E ) )  given in equation (9) and performing the integration (for 
E << D / L : , y , z )  will result in 

Thus, for energies below the Thouless energy the SNS junction phase-averaged variance 
will deviate From both the GuE and GOE statistics. For energies above the Thouless energy 
the order parameter phase has no influence on the variance and the functional form of the 
variance will correspond to equation (12). 
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Figure 6. The variance of t h ~  number of levels for values of energy as a fundion of rhe 
n o d z e d  number of levels (N). 

We have also performed exact diagonalization numerical studies of the SNS junction 
in order to verify the previous results. The Bdc equation (equation (I)) can be written 
as a matrix in a tight-binding site representation [26] resulting in a matrix M of order 
2n x 2n, where n is the number of sites in the SNS junction. M<., = Hi, j ,  where H 
is a n x n matrix corresponding to the tight-binding representation of the single-electron 
Hamiltonian (i.e., H = CEI@.I@; + V +,@;, ( l , m )  are nearest-neighbour sites) and 
1 < i, j < n. For sites belonging to the normal region the on-site energies assume values 
of - W / 2  < <( < W/Z, while in the superconducting regions ci = 0. In a similar fashion 
 MI+,,,^+^ = -Hi , j .  The off-diagonal blocks of M are determined by the order parameter 
Mt+",j = 6i.jAi exp(ix,), where 6i,j is a Kronecker delta, Ai = AO and xi = x1(2) for sites 
belonging to the left (right) superconducting region, while Ai = 0 for sites in the normal 
region. Likewise Mt,j+" = 6i.j Ai exp(-iXi). 

The numerical calculations were performed for a two-dimensional SNS junction with 
20 x 20 sites (i.e., matrices of size 2n = 800). The first five columns of sites on each side 
of the junction are considered as the superconducting region, while the central region (of 
size 10 x 20) is normal. The disorder parameter was chosen as W = 2V and the order 
parameter A,, = V. An order parameter Ao = 4V was also investigated but no essential 
difference in the behaviour of the low-lying energy levels was observed. The averaging 
over different configurations of disorder was performed over 3000 samples. 

First of all the dependence of the energy levels on the order parameter phases was 
investigated. As expected, the energy levels depend only on the phase difference (o and not 
on the individual values of X I  and x z .  The energy levels of a single realization as well as the 
averaged energy levels of the SNS junction are periodic in (o with a period of 2ir. In figure 3 
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the level spacing distribution P ( s )  averaged over the 30 lowest electronic levels (levels 400- 
430) for different values of the order parameter phase differences (p = 0, O.%, 0.51. I) 
are presented. It can be seen that for (0 = 0, ~t the GOB level spacing distribution is followed 
while for ‘p = 0.2~. 0 . 5 ~  an almost perfect Gm distribution is obtained. Thus. for P ( s )  the 
transition from GOE statistics to GUE statistics is almost completed already for p = 0.21. 

The variance of the number of levels in a given energy region as a function of the 
averaged number of levels (SzN,(E)), centred around the 410th level, for values of energy 
smaller than the Thouless energy is shown in figure 4. From comparing the numerical 
results to the predictions of the RMT theory given in equation (1 1) it is clear that for the 
p = 0, I cases the GOE variance fits perfectly, while for the p = 0.51 case a reasonable 
fit to the CUE statistics is seen. For the (0 = 0.2~ the behaviour is in between the two 
statistics. Thus, as was predicted in equation (9) the periodical dependence of the variance 
on p has a period of I and exhibits a crossover from GOE to CUE statistics. It is interesting 
to note that the variance is more sensitive to the order parameter phase differcnce than the 
level spacing distribution. 

As we have previously mentioned, in order to compare quantitatively the results of the 
diagrammatic perturbation calculation given in equation (9) to the numerical results one 
must be in the region of N , ( E )  > 1. This region is plotted in figure 5. The summation in 
equation (9), which describes the crossover between the GOE and GUE statistics as well as 
the non-universal behaviour due to the Thouless energy, has been performed numerically 
and corresponds to the curves in the figure. The value of the Thouless energy in that 
region is estimated from the fit to the p = 0.51 case as D / L :  = 6s and as previously 
discussed r = s. The constant h ~ o ~  is added for the p = 0. I cases while AGUE is added 
for ‘p = 0.21. 0.51. It can be seen that as long as (N) < 5 there is a reasonable agreement 
between the numerical results and the theory, while for ( N )  > 5 the numerical data is lower 
than theory. The reason for this discrepancy is the fact that we consider only a finite region 
of the low-lying electronic excitations (i.e., levels 400-420) in order not to venture into 
hole states from one side and not to reach into the high-lying excitations from the other 
side. As noted in 1311, when one considers only a finite number of levels the variance as 
a function of (N) is lower than expected and one should renormalize the average number 
of levels in the following way: (fi) = (N)(1 - ( N ) / N o ) ,  where NO is the number of 
states considered. The Thouless energy should also be normalized in a similar fashion, 
EjL: = D/L:(l - ( N ) / N o ) .  The variance as a function of (fi) is presented in figure 6. 
An excellent fit o f  the theory to the normalized level number is obtained. 

In conclusion, the spectra statistical properties of an SNS junction were investigated 
analytically and numerically. The energy levels depend on the difference between the arder 
parameter phases with a period of 21, The statistical properties of the energy levels also 
depend on p but with a periodicity of I. For p = 0 the statistical properties follow the GOB 
statistics, while for p # 0 they may be described as a combination between GOE and GUE 
statistics. 
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